3.617 \(\int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx\)

Optimal. Leaf size=268 \[ \frac {2 A \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d \sqrt {\sec (c+d x)}}-\frac {2 B \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{b d \sqrt {\sec (c+d x)}} \]

[Out]

2*A*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)
*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d/sec(d*x+c)^(1/2)-2*B*csc(d
*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)
*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b/d/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.40, antiderivative size = 268, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {2961, 3006, 2809, 2816} \[ \frac {2 A \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d \sqrt {\sec (c+d x)}}-\frac {2 B \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{b d \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]])/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(2*A*Sqrt[a + b]*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[C
os[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])
/(a*d*Sqrt[Sec[c + d*x]]) - (2*Sqrt[a + b]*B*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt
[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b
)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(b*d*Sqrt[Sec[c + d*x]])

Rule 2809

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(2*b*Tan
[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c - d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticP
i[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[(c + d)/b, 2])], -((c + d)/(c - d))])/(d
*f), x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2961

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[((a + b*Sin[e + f*x])^m*(
c + d*Sin[e + f*x])^n)/(g*Sin[e + f*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3006

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[B/d, Int[Sqrt[c + d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x], x] -
 Dist[(B*c - A*d)/d, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx\\ &=\left (A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx+\left (B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx\\ &=\frac {2 A \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d \sqrt {\sec (c+d x)}}-\frac {2 \sqrt {a+b} B \sqrt {\cos (c+d x)} \csc (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.58, size = 157, normalized size = 0.59 \[ \frac {2 \sqrt {\sec (c+d x)+1} \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} \left ((A-B) F\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )+2 B \Pi \left (-1;\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )\right )}{d \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]])/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(2*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*((A - B)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a +
b)/(a + b)] + 2*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)])*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/
2]^2]*Sqrt[1 + Sec[c + d*x]])/(d*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2])

________________________________________________________________________________________

fricas [F]  time = 1.05, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{\sqrt {b \cos \left (d x + c\right ) + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*sqrt(sec(d*x + c))/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{\sqrt {b \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(sec(d*x + c))/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

maple [A]  time = 0.38, size = 199, normalized size = 0.74 \[ \frac {2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \left (A \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {-\frac {a -b}{a +b}}\right )-B \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {-\frac {a -b}{a +b}}\right )+2 B \EllipticPi \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, -1, \sqrt {-\frac {a -b}{a +b}}\right )\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )}}\, \left (\sin ^{2}\left (d x +c \right )\right )}{d \sqrt {a +b \cos \left (d x +c \right )}\, \left (-1+\cos \left (d x +c \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x)

[Out]

2/d*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(A*EllipticF((-1+cos(d*x+c
))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))-B*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))+2*B*EllipticP
i((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2)))/(a+b*cos(d*x+c))^(1/2)*(1/cos(d*x+c))^(1/2)*sin(d*x+c)^
2/(-1+cos(d*x+c))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{\sqrt {b \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(sec(d*x + c))/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + b*cos(c + d*x))^(1/2),x)

[Out]

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + b*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}}{\sqrt {a + b \cos {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)**(1/2)/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x))*sqrt(sec(c + d*x))/sqrt(a + b*cos(c + d*x)), x)

________________________________________________________________________________________